

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 178 (2005) 3708-3714

JOURNAL OF SOLID STATE CHEMISTRY

www.elsevier.com/locate/jssc

Synthesis, structure and properties of new chain cuprates, $Na_3Cu_2O_4$ and $Na_8Cu_5O_{10}$

Mikhail Sofin, Eva-Maria Peters, Martin Jansen*

Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany

Received 27 June 2005; received in revised form 13 September 2005; accepted 14 September 2005 Available online 28 October 2005

Abstract

Na₃Cu₂O₄ and Na₈Cu₅O₁₀ were prepared via the azide/nitrate route from stoichiometric mixtures of the precursors CuO, NaN₃ and NaNO₃. Single crystals have been grown by subsequent annealing of the as prepared powders at 500 °C for 2000 h in silver crucibles, which were sealed in glass ampoules under dried Ar. According to the X-ray analysis of the crystal structures (Na₃Cu₂O₄: $P2_1/n$, Z = 4, a = 5.7046(2), b = 11.0591(4), c = 8.0261(3) Å, $\beta = 108.389(1)^\circ$, 2516 independent reflections, $R_1(all) = 0.0813$, w R_2 (all) = 0.1223; Na₈Cu₅O₁₀: Cm, Z = 2, a = 8.228(1), b = 13.929(2), c = 5.707(1) Å, $\beta = 111.718(2)^\circ$, 2949 independent reflections, $R_1(all) = 0.0349$, w R_2 (all) = 0.0850), the main feature of both crystal structures are CuO₂ chains built up from planar, edge-sharing CuO₄ squares. From the analysis of the Cu–O bond lengths, the valence states of either +2 or +3 can be unambiguously assigned to each copper atom. In Na₃Cu₂O₄ these ions alternate in the chains, in Na₈Cu₅O₁₀ the periodically repeated part consists of five atoms according to Cu^{II}–Cu^{II}–Cu^{III}–C

© 2005 Elsevier Inc. All rights reserved.

Keywords: Sodium copper oxide; Azide/nitrate route; Crystal structure; Magnetic properties

1. Introduction

Transition metal oxides exhibit a fascinating richness in physical properties. Among these, metal–insulator transitions, high-temperature superconductivity and colossal magnetoresistance provide a basis for manifold applications. Primarily, the underlying microscopic effects can be traced back to the strong electron interactions effective in such compounds, expressing themselves in order–disorder phenomena with respect to charges, spins and orbitals [1]. Efforts in developing a comprehensive microscopic description of the underlying interactions have suffered from the lack of simple model systems with undisturbed translational symmetry.

*Corresponding author. Fax: +497116891502.

E-mail address: jansen@fkf.mpg.de (M. Jansen).

Recently, a novel, and versatile, route [2] to the synthesis of alkalioxometallates has become available which offers a number of advantages over the conventional approaches. As a source for the alkali metal component, mixtures of the respective alkali azides and nitrates (or nitrites) are used instead of the alkali oxides which are intricate to prepare and notoriously difficult to handle. As a most attractive feature, beside the metals' ratio also the oxygen content, and thus the degree and kind of doping, of the desired product can be effectively controlled by weighing out the starting materials in appropriate portions. Employing this procedure, the title compounds have been prepared as microcrystalline pure phases in gram-amounts. In this work, we present synthesis, crystal structures and properties of these sodium oxocuprates (II, III) with precisely adjusted Cu^{II}/Cu^{III} rations and fully expressed translational order. The unique phenomenon, the formation of one-dimensional Wigner lattices, was observed in the title compounds [3].

^{0022-4596/\$-}see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2005.09.023

2. Experimental

Starting materials for the preparation of the sodium cuprates were sodium nitrate (Merck, 99.99%), sodium azide (Sigma-Aldrich, 99.99%) and copper oxide CuO prepared by heating Cu(C₂O₄) $\frac{1}{2}$ H₂O in a flow of oxygen at 320 °C, for 20 h. The starting materials (NaN₃, NaNO₃ and CuO) were mixed in the ratio required according to the general Eq. (1) with respect to the desired x (x = 0.5 for Na₃Cu₂O₄ and x = 0.6 for Na₈Cu₅O₁₀):

milled in a planet ball mill, pressed in pellets under 10^5 N, dried under vacuum (10^{-3} mbar) at 150 °C for 12 h, and placed under argon in a tightly closed steel container [4], provided with a silver inlay. In a flow of dry argon the following temperature profile was applied: $25 \rightarrow 260$ °C (100 °C/h); $260 \rightarrow 400 \text{ °C}$ (5 °C/h); $400 \rightarrow 650 \text{ °C}$ (600 °C/h); $650 \rightarrow 670 \text{ °C}$ (200 °C/h) and subsequent annealing for 20 h at 670 °C. Caution: If heated too rapidly the containers may blow up!

The obtained black powders, being very sensitive to humid air, were sealed in glass ampoules under argon atmosphere and all following manipulations with these substances were performed in inert atmospheres of purified argon.

Single crystals have been grown by subsequent annealing of the pressed in pellets powders at 500 °C for 2000 h in silver crucibles, which were sealed in glass ampoules under dried Ar.

The X-ray investigation on powder samples was performed using a STOE Stadi P diffractometer with Cu- $K_{\alpha 1}$ radiation ($\lambda = 1.54178$ Å) at room temperature using a position-sensitive detector and a curved germanium monochromator. The collected powder data for Na₃Cu₂O₄ and $Na_8Cu_5O_{10}$ are given in Figs. 1 and 2, respectively. The single crystal diffraction data were collected on a four-cycle diffractometer (Bruker AXS) equipped with a SMART-CCD (APEX), at 293 K.

Thermal analyses were carried out using a DTA/TG device (STA 409, Netzsch) coupled with a quadrupole mass spectrometer (QMG 421, Balzers). The samples were heated at a rate of 10 K/min in a corundum crucible, under dry argon.

The magnetic susceptibility $\chi(T)$ was measured in the temperature range from 2 to 350 K (Na₈Cu₅O₁₀), and from 5 to 330 K (Na₃Cu₂O₄), in magnetic fields up to 5 T using a SQUID-Magnetometer (MPMS 5.5, Quantum Design). The diamagnetic correction has been applied using tabulated values [5].

3. Results and discussion

The title compounds Na₃Cu₂O₄ and Na₈Cu₅O₁₀ have been prepared as microcrystalline, pure phases in gramamounts. They begin to decompose at about 700 °C (Na₃Cu₂O₄) and 750 °C (Na₈Cu₅O₁₀), leaving mixtures of NaCuO [6-8] and NaCu₂O₂ [8-10] as the only solid residues. The crystal structures of the title compounds were determined from single crystal data collected at 293 K. According to the systematic extinction only one space group $(P2_1/n)$ was possible for Na₃Cu₂O₄, while for Na₈Cu₅O10 there were three potential candidates: C2, Cm and C2/m. All these three possibilities were proven by solving the structure by direct methods. Only in the space group *Cm* a reasonable solution could be found. For X-ray and crystallographic data, see Tables 1 and 2. Atom coordinates and temperature parameters are given in Tables 3-6.

The new oxocuprates(II/III) belong to the compositional series $Na_{1+x}CuO_2$, with the end members $NaCuO_2$ [11–13]

Fig. 1. Measured XRD pattern of Na₃Cu₂O₄ (above) and calculated from single-crystal data (below).

Fig. 2. Measured XRD pattern of Na₈Cu₅O₁₀ (above) and calculated from single-crystal data (below).

Crystal data

Table 1 X-ray and crystallographic data for Na₃Cu₂O₄

Crystal data

Crystal system Space group, Z

Crystal system	Monoclinic	Crystal system	Monoclinic
Space group, Z	$P2_1/n$ (No. 14), 4	Space group, Z	<i>Cm</i> (No. 8), 2
Lattice constants (powder data) (Å	a = 5.7046(2)	Lattice constants (Å and deg.)	a = 8.228(1)
and deg.)	b = 11.0591(4)		b = 13.929(2)
	c = 8.0261(3)		c = 5.707(1)
	$\beta = 108.389(1)$		$\beta = 111.718(2)$
Molar volume (cm ³ /mol)	120.4	Molar mass (g/mol)	330.81
Molar mass (g/mol)	260.05	Molar volume (cm ³ /mol)	365.96
Calculated density (g/cm ³)	3.59	Calculated density (g/cm^3)	3.62
Crystal shape, colour	Sticks, black	Crystal shape, colour	Sticks, black
Crystal size, (mm ³)	$0.3 \times 0.2 \times 0.1$	Crystal size (mm ³)	$0.4 \times 0.2 \times 0.2$
Structure determination		Structure determination	
Structure solution, refinement	Direct methods, full-matrix least-squares on F^2	Structure solution, -refinement	Direct methods, full-matrix least- squares on F^2
Parameters refined	82	Parameters refined	112
R_1 (Fo>4 sig Fo ² /all)	0.0525/0.0813	R_1 ($F_0 > 4$ sig(F_0)/all)	0.0299/0.0349
wR_2	0.1223	WR_2	0.0850
Weighting factor w	$w = 1/(\sigma^{2}(Fo^{2}) + (0.0621P)^{2}),$ $P = (\max(Fo^{2}.0) + 2Fc^{2})/3$	Weighting factor w	$w = 1/(\sigma^{2}(Fo^{2}) + (0.0467P)^{2}),$ $P = (\max(Fo^{2} 0) + 2Fc^{2})/3$
$\Delta \rho_{\min} / \rho_{\max} \ (e^{-} \not A^{3})$	-1.47/3.58	$\Delta \rho_{\rm min} / \rho_{\rm max} \ ({\rm e}^- \not/{\rm \AA}^3)$	-1.31/0.79
Data collection		Data collection	
Diffractometer	Bruker AXS, APEX SMART- CCD	Diffractometer	Bruker AXS, APEX SMART- CCD
Monochromator	Graphite	Monochromator	Graphite
Wavelength λ (Å)	Mo- K_{α} , 0.71073	Wavelength λ (Å)	$Mo-K_{\alpha}, 0.71073$
2Θ range for data collection	2 <i>Θ</i> <75.10	2Θ range for data collection	$2\Theta < 72.94$
<i>h k l</i> -range	-9 < h < 9, -18 < k < 18,	ç	-13 < h < 13, -23 < k < 23,
	-13 <i><l< i=""><13</l<></i>		-9 < l < 9
Absorption correction	SADABS [17]	Absorption correction	SADABS [17]
Total no. reflections	9556	Total no. reflections	5747
Unique reflections	2516	Unique reflections	2949
Absorption coefficient μ (mm ⁻¹)	9.00	Absorption coefficient μ (mm ⁻¹)	8.94
<i>F</i> (000)	492	F(000)	626

Table 2 X-ray and crystallographic data for Na₈Cu₅O₁₀ and still elusive Na₂CuO₂. The most prominent structural feature, common to all representatives known thus far, is a one-dimensional polyanion ${}^{1}_{\infty}$ CuO₂^{*n*-} constituted of CuO₄-square units sharing edges in trans-position, see Fig. 3. The chains, running along *b* (Fig. 4), are slightly wave-like, as can be seen in Fig. 5. The sodium ions, which achieve

Table 3 Atomic coordinates and isotropic thermal parameters (in ${\rm \AA}^2)$ for $Na_3Cu_2O_4$

Atom	Site	X	у	Ζ	$U_{ m eq}$
Cu1	4 <i>e</i>	0.24258(8)	0.42473(4)	0.77268(6)	0.0104(1)
Cu2	4e	0.25876(8)	0.17312(4)	0.75895(6)	0.0089(1)
Na1	4e	0.2230(3)	0.5793(2)	0.1237(2)	0.0155(3)
Na2	4e	0.2255(3)	0.2975(2)	0.1192(2)	0.0160(3)
Na3	4e	0.3173(4)	0.3895(2)	0.4461(3)	0.0292(5)
01	4e	0.0643(5)	0.2869(2)	0.8223(4)	0.0123(5)
O2	4e	0.4495(5)	0.2985(2)	0.7285(4)	0.0161(5)
O3	4e	0.4398(6)	0.5491(3)	0.7154(4)	0.0182(6)
O4	4 <i>e</i>	0.0459(5)	0.5603(2)	0.8069(4)	0.0132(5)

Table 4 Atomic coordinates and isotropic thermal parameters (in ${\rm \AA}^2$) for Na_8Cu_5O_{10}

Atom	Site	X	У	Ζ	$U_{ m eq}$
Cu1	4 <i>b</i>	0.2722(1)	0.9011(1)	0.2215(1)	0.0115(1)
Cu2	4b	0.2833(1)	0.6989(1)	0.2501(1)	0.0093(1)
Cu3	2a	0.3014(1)	$\frac{1}{2}$	0.2756(1)	0.0102(2)
Na1	4b	0.1550(3)	0.8898(1)	0.6399(5)	0.0153(4)
Na2	2a	0.9095(4)	0	0.8487(6)	0.0150(5)
Na3	4b	0.9261(3)	0.7790(1)	0.8569(4)	0.0221(4)
Na4	4b	0.5984(3)	0.8606(2)	0.6049(5)	0.0508(7)
Na5	2a	0.4759(3)	0	0.9013(5)	0.0257(4)
01	2a	0.2175(8)	0	0.970(1)	0.0131(9)
O2	2a	0.3367(8)	0	0.472(2)	0.019(1)
O3	4b	0.2406(8)	0.5994(2)	0.019(1)	0.0179(9)
O4	4b	0.3210(6)	0.8009(2)	0.4698(9)	0.0172(8)
O5	4b	0.2241(7)	0.7924(2)	0.9953(8)	0.0188(9)
O6	4 <i>b</i>	0.3467(6)	0.6071(2)	0.5059(8)	0.0113(7)

Table 5 Anisotropic thermal displacement parameters (in ${\rm \AA}^2)$ for $Na_3Cu_2O_4$

coordination numbers (CN) of 4-5 with plausible Na-O bond lengths ranging from 2.270 to 2.788 Å (c.f. Tables 7 and 8), are embedded between these anionic entities in the structure. The projections of the crystal structures on (010)are given in Fig. 4. The geometric data as determined by single-crystal structural analyses give clear evidence for a charge ordering at the copper sites. Based on the copper oxygen bond lengths, one can distinguish Cu^{II} and Cu^{III} sites, unambiguously. In Na₃Cu₂O₄ these ions alternate in the chains, while in $Na_8Cu_5O_{10}$ the periodically repeated part consists of five copper atoms in the sequence Cu^{II} - Cu^{II} - Cu^{III} - Cu^{III} - Cu^{III} (see Fig. 3). The way of linking the primary structural units (squares), together with the variations of the copper to oxygen distances, inevitably lead to deviations of the O-Cu-O angles from the ideal 90°. Interatomic distances, CN, effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR) [14] for Na₃Cu₂O₄ and Na₈Cu₅O₁₀ are given in Tables 7 and 8, respectively.

The crystal structures of both new cuprates are very similar, in spite of the fact, that the symmetry descriptions are most different. The two compounds differ in the Na/CuO₂ ratios, determining the Cu^{II}/Cu^{III} ratios, as well as the periodicity along b (chain direction). Both compounds belong to the general family $Na_{1+x}CuO_2$, out of which three members' NaCuO₂ [11–13] (x = 0), Na₃Cu₂O₄ (x = 0.5) and Na₈Cu₅O₁₀ (x = 0.6), are known, thus far. The title cuprates show a virtually identical chain arrangement, leading to nearly the same distribution of cation sites, which are filled by sodium ions in different ways (depending on the respective composition). The CuO_2 chains are stacked into layers separated by slabs of sodium atoms (Fig. 4). The chains' orientation in $Na_3Cu_2O_4$ and $Na_8Cu_5O_{10}$ differs from that one in $NaCuO_2$. In the latter the chains are canted against the layers mentioned, while they are oriented perpendicular to the planes in the mixedvalent cuprates (see Fig. 4). This leads to a significant divergence in the distances between the chains which is reflected by variations in the lattice constants. For a direct comparison of cell parameters, one can choose for $Na_3Cu_2O_4$ other basic vectors, which would correspond to those of NaCuO₂ and Na₈Cu₅O₁₀. The reduced b lattice

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	<i>U</i> ₁₂
Cul	0.0108(2)	0.0089(2)	0.0139(2)	-0.0002(2)	0.0072(2)	0.0002(2)
Cu2	0.0082(2)	0.0090(2)	0.011(2)	-0.0010(1)	0.0578(2)	-0.0003(1)
Na1	0.0135(7)	0.0126(7)	0.0205(8)	-0.0005(6)	0.0056(6)	0.0006(6)
Na2	0.0144(8)	0.0165(8)	0.0175(7)	0.0024(6)	0.0055(6)	0.0017(6)
Na3	0.0233(9)	0.047(2)	0.0194(9)	0.0087(8)	0.0094(7)	0.0034(9)
O1	0.011(2)	0.011(2)	0.016(2)	-0.0013(9)	0.0060(9)	0.0023(9)
02	0.013(2)	0.012(2)	0.028(2)	-0.004(2)	0.012(2)	-0.0025(9)
O3	0.018(2)	0.011(2)	0.031(2)	0.002(1)	0.016(2)	0.002(1)
O4	0.013(2)	0.010(2)	0.020(2)	0.0002(9)	0.010(1)	-0.0013(9)

Table 6					
Anisotropic thermal	displacement	parameters	(in Å ²) for	Na ₈ Cu ₅ O ₁₀

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Cul	0.0140(3)	0.0116(2)	0.0092(3)	0.0022(1)	0.0045(2)	0.0018(1)
Cu2	0.0108(1)	0.0099(1)	0.0072(1)	0.0014(1)	0.0031(1)	0.0013(1)
Cu3	0.0110(4)	0.0118(2)	0.0069(4)	0	0.0021(3)	0
Na1	0.0130(8)	0.0169(7)	0.016(2)	0.0008(5)	0.0060(7)	-0.0005(5)
Na2	0.019(2)	0.0159(9)	0.011(2)	0	0.0066(9)	0
Na3	0.0264(8)	0.0266(7)	0.0137(7)	-0.0099(6)	0.0080(6)	-0.0014(6)
Na4	0.0310(9)	0.102(2)	0.0231(8)	-0.040(2)	0.0144(8)	-0.026(2)
Na5	0.0129(8)	0.044(2)	0.0182(9)	0	0.0031(6)	0
01	0.018(2)	0.018(2)	0.011(2)	0	0.006(2)	0
02	0.031(2)	0.015(2)	0.010(2)	0	0.005(2)	0
O3	0.031(2)	0.011(2)	0.011(2)	-0.0028(9)	0.006(2)	-0.0010(9)
O4	0.021(2)	0.021(2)	0.009(2)	0.0078(9)	0.005(2)	0.0026(9)
O5	0.024(2)	0.022(2)	0.011(2)	0.008(1)	0.007(2)	0.006(2)
O6	0.014(2)	0.010(2)	0.009(2)	-0.0006(8)	0.003(2)	-0.0001(8)

Fig. 3. CuO_2 chains in $Na_3Cu_2O_4$ (a) and $Na_8Cu_5O_{10}$ (b): Cu^{II} —white, Cu^{III} —black, O—gray. The perioically repeated units are marked for each chain.

constant was defined as $\frac{1}{4}$ for Na₃Cu₂O₄, and $\frac{1}{5}$ for Na₈Cu₅O₁₀, of the original *b* parameters. A comparison of the uniformed cells is given in Table 9.

Two neighbouring CuO₂ chains in Na_{1+x}CuO₂ cuprates are shifted against each other by b/2. This constitutes a principle difference with respect to the MCuO₂ cuprates formed by the bigger alkali metals (M = K [12], Rb, Cs [15]), where the chains are not shifted in the *b* direction, with respect to each other. Thus, in these latter compounds there is only one cation site per copper atom, a prism with a distorted rhombic basis. In the Na_{1+x}CuO₂ family, however, one has one octahedral and two tetrahedral sites per copper atom.

The structures of title cuprates can be interrelated by introducing the fourth dimension into the symmetry description and considering the structures as composite modulated ones. In such a description the title compounds have a common small basic unit cell (containing only one CuO_2 unit) and the same superspace group, but different propagation vectors along the chain direction, which are in

Fig. 4. Crystal structures of $Na_3Cu_2O_4$ (a), $Na_8Cu_5O_{10}$ (b) and $NaCuO_2$ (c). Views along [010].

case of commensurate modulations $3/4b^*$ and $4/5b^*$, for Na₃Cu₂O₄ and Na₈Cu₅O₁₀, respectively. The detailed structure descriptions in 4D space for both cuprates as well as observed formation of nonstoichiometric

Fig. 5. Crystal structures of $Na_3Cu_2O_4$ (a) and $Na_8Cu_5O_{10}$ (b) showing the periodicities of Na atoms and CuO_2 units.

Table 7 Interatomic distances (in Å), CN, ECoN and MEFIR [14] (in Å) for $Na_3Cu_2O_4$

 $Na_{8\pm y}Cu_5O_{10}$ compositions with incommensurate modulations are out of the coverage of this work and will be published elsewhere [16].

The magnetic susceptibilities of $Na_3Cu_2O_4$ and Na₈Cu₅O₁₀ have been measured for magnetic fields ranging from 0.001 to 5T. The susceptibilities, which were independent on the magnetic field strength, are displayed in Fig. 6 for H = 1 T. For a better comparability, the susceptibility data are given per one magnetic centre $(S_{Cu}^{+2} = \frac{1}{2}, S_{Cu}^{+3} = 0)$, that is $\chi = \chi_{mole}$ for Na₃Cu₂O₄ and $\chi = 1/3\chi_{mole}$ for Na₈Cu₅O₁₀. Qualitatively, both compounds show a similar behaviour reflecting an antiferromagnetic character of one-dimensional spin interactions. The most obvious difference in the magnetic properties as displayed in Fig. 6 is the significantly higher χ -values of Na₈Cu₅O₁₀ (given per one Cu^{+2} ion) as compared to Na₃Cu₂O₄. The difference amounts to about 15% at 300 K and grows rapidly on lowering the temperature. This is indicative of a stronger antiferromagnetic spin exchange in Na₃Cu₂O₄, which is also reflected by the maximum of $\chi(T)$ occurring already at 110K while it takes place at 28K for

Atom	01	O2	O3	O4	CN	ECoN	MEFIR
Cul	1.942	1.931	1.923	1.943	4	4.0	0.53
Cu2	1.852	1.826	1.831	1.857	4	4.0	0.43
Na1	2.348	2.307	2.412	2.364	5	4.9	0.93
				2.431			
Na2	2.270	2.292	2.585	2.409	5	4.6	0.90
	2.297						
Na3	2.768	2.375	2.279	2.464	5	4.2	0.94
			2.707				
CN	6	5	6	6			
ECoN	5.3	5.0	5.1	5.9			
MEFIR	1.42	1.41	1.44	1.45			

Table 8 Interatomic distances (in Å), CN, ECoN and MEFIR [14] (in Å) for $Na_8Cu_5O_{10}$

Atom	O1	O2	O3	O4	O5	O6	CN	ECoN	MEFIR
Cul	1.921	1.915		1.923	1.933		4	4.0	0.52
Cu2			1.8543	1.843	1.878	1.864	4	4.0	0.45
Cu3			1.940			1.931	4	4.0	0.53
			1.940			1.931			
Na1	2.333	2.563		2.308	2.328	2.363	5	4.8	0.93
Na2	2.368		2.408			2.360	5	5.0	0.97
			2.408			2.360			
Na3			2.665	2.335	2.289	2.447	5	4.5	0.92
					2.312				
Na4		2.788	2.286	2.279		2.356	4	3.4	0.90
Na5	2.299	2.287	2.455				4	3.8	0.91
			2.455						
CN	6	7	6	5	5	6			
ECoN	6.0	5.4	5.5	5.0	5.1	5.9			
MEFIR	1.41	1.46	1.44	1.41	1.42	1.43			

Table 9 Cell constants of uniformed cells for NaCuO_2, Na_3Cu_2O_4 and Na_8Cu_5O_{10}

Cell constants	NaCuO ₂	Na ₃ Cu ₂ O ₄	Na ₈ Cu ₅ O ₁₀
a (Å)	6.35	8.24	8.23
b (Å)	2.75	(2*)2.76	(5*)2.79
<i>c</i> (Å)	6.10	5.72	5.71
β (deg.)	120.77	112.49	111.72
$V(Å^3)$	91.50	(2*)120.40	(5*)121.52

Fig. 6. Magnetic properties of Na₃Cu₂O₄ (a, b) and Na₈Cu₅O₁₀ (c, d) represented as χ vs. *T* (a, c) and χ^{-1} vs. *T* (b, d). The full line corresponds to the fit by the Curie–Weiss law.

Na₈Cu₅O₁₀. In the high temperature range (250–330 K for Na₃Cu₂O₄ and 200–350 K for Na₈Cu₅O₁₀) the magnetic behaviour can be evaluated applying the Curie–Weiss law, resulting in $\mu = 1.7 \mu_{\rm B}$, $\Theta = -160$ K and $\mu = 1.8 \mu_{\rm B}$, $\Theta = -58$ K, for Na₃Cu₂O₄ and Na₈Cu₅O₁₀, respectively.

At low temperatures, the interchain exchange becomes significant. Thus, below 13 K (Na₃Cu₂O₄), and 24 K (Na₈Cu₅O₁₀), three-dimensional antiferromagnetic ordering occurs.

In this article, the synthesis via the azide/nitrate route, structure determination from single-crystal data, as well as thermal and magnetic properties of two new sodium mixed-valent sodium cuprate (II,III) are present. The structural and magnetic properties are discussed.

References

- [1] Y. Tokura, N. Nagaosa, Science 288 (2000) 462.
- [2] D. Trinschek, M. Jansen, Angew. Chem. Int. Ed. 38 (1999) 133.
- [3] P. Horsch, M. Sofin, M. Mayr, M. Jansen, Phys. Rev. Lett. 94 (2005) 076403.
- [4] M. Sofin, E.-M. Peters, M. Jansen, Z. Anorg. Allg. Chem. 628 (2002) 2691.
- [5] Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaften und Technik; Neue Serie, Gr. II, Bd. 2, Springer, Berlin, 1966.
- [6] W. Losert, R. Hoppe, Z. Anorg. Allg. Chem. 524 (1985) 7.
- [7] R. Hoppe, H. Hestermann, F. Schenck, Z. Anorg. Allg. Chem. 367 (1969) 275.
- [8] A.B. Kulakov, A. Maljuk, M. Sofin, C.T. Lin, M. Jansen, J. Solid State Chem. 177 (2004) 3274.
- [9] G. Tams, Hk. Müller-Buschbaum,, J. Alloy. Compd. 189 (1992) 241.
- [10] A. Maljuk, A.B. Kulakov, M. Sofin, L. Capogna, J. Strempfer, C.T. Lin, M. Jansen, B. Keimer, J. Cryst. Growth 263 (2004) 338.
- [11] K. Hestermann, R. Hoppe, Z. Anorg. Allg. Chem. 367 (1969) 249.
- [12] N.E. Brese, M. O'Keefe, R.B. von Dreele, V.G. Young, J. Solid State Chem. 83 (1989) 1.
- [13] J. Pickardt, W. Paulus, M. Schmalz, L. Schoellhorn, J. Solid State Chem. 89 (1990) 308.
- [14] R. Hoppe, Z. Kristallogr. 150 (1979) 23.
- [15] K. Hestermann, R. Hoppe, Z. Anorg. Allg. Chem. 367 (1969) 261.
- [16] S. van Smaalen, M. Sofin, M. Jansen, in preparation.
- [17] G.M. Sheldrick, SADABS: Bruker AXS, Inc., Madison, WI, 1998.